Abstract
Polyethersulfone membranes with integrated negatively-charged hydrogel of crosslinked poly(acrylamido-2-methylpropane sulfonic acid) were prepared by a combination of a liquid phase inversion process with photopolymerization and crosslinking of functional monomers included in the casting solution. A designed experiment was conducted to select the optimal composition for preparing membranes with a sufficient degree of swelling and ion exchange capacity. Scanning electron microscopy images revealed an ultrafine hybrid structure with an interconnected network of submicron particles embedded within the microporous polyethersulfone support. An intramembrane diffusion model was used to describe kinetics of heavy metal sorption by these hydrogels and the calculated apparent diffusion coefficients were 2–3 times larger than in commercial ion-exchange resins. Equilibrium sorption of heavy metals was described using a semi-empirical Langmuir model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.