Abstract

Background: Activation of circulating platelets by exposed vessel wall collagen is a primary step in the pathogenesis of thrombotic diseases such as heart attack and stroke. Drugs that are capable of blocking platelet activation successfully reduce cardiovascular mortality and morbidity. However, despite intensive research efforts in antithrombotic drug discovery and development, uncontrolled hemorrhage still remains the most common side effect associated with antithrombotic drugs that are currently in use. Objective: The selective inhibition of glycoprotein VI (GPVI), the central platelet collagen receptor, and/or its signaling may inhibit thrombosis without affecting hemostatic plug formation. However, the mechanism of GPVI signaling is not known, hindering the further development of this promising antithrombotic strategy. Methods: This review focuses on an innovative mechanistic concept of platelet inhibition. Results/conclusion: A novel model of GPVI signaling, the signaling chain homooligomerization (SCHOOL) model, has revealed new therapeutic targets for GPVI inhibition, resulting in the development of novel antithrombotic pharmacological approaches and the invention of new platelet inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.