Abstract
The prevailing mechanisms of action of traditional chemotherapeutic agents have been challenged by sphingolipid cancer research. Many studies have shown that ceramide generation in response to cytotoxic agents is central to tumor cell death. Ceramide can be generated either via hydrolysis of cell-membrane sphingomyelin by sphingomyelinases, hydrolysis of cerebrosides, or via de novo synthesis by ceramide synthases. Ceramide can act as a second messenger for apoptosis, senescence or autophagy. Inherent or acquired alterations in the sphingolipid pathway can account for resistance to the classic chemotherapeutic agents. In particular, it has been shown that activation of the acid ceramidase can lead to the formation of sphingosine 1-phosphate, which then antagonizes ceramide signaling by initiating a pro-survival signaling pathway. Furthermore, ceramide glycosylation catalyzed by glucosylceramide synthase converts ceramide to glucosylceramide, thus eliminating ceramide and consequently protecting cancer cells from apoptosis. In this review, we describe the effects of some of the most commonly used chemotherapeutic agents on ceramide generation, with a particular emphasis on strategies used to enhance the efficacy of these agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.