Abstract

Renin is the key regulated step in the enzymatic cascade that leads to angiotensin generation and the control of blood pressure and fluid/electrolyte homeostasis. In the adult unstressed animal, renin is synthesized and released by renal juxtaglomerular cells. However, when homeostasis is threatened, the number of cells that express and release renin increases and extends beyond the juxtaglomerular area; the result is an increase in circulating renin and the reestablishment of homeostasis. The increase in the number of renin cells, a process termed recruitment, is achieved by dedifferentiation and re-expression of renin in cells derived from the renin lineage. The mechanisms that regulate the related processes of reacquisition of the renin phenotype, renin synthesis, and renin release are beginning to be understood. Numerous studies point to cAMP as a central common factor for the regulation of renin phenotype. In addition, we are seeing the emergence of gap junctions and microRNAs as new and promising avenues for a more complete understanding of the complex regulation of the renin cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.