Abstract
RtcB enzymes are a newly discovered family of RNA ligases, implicated in tRNA splicing and other RNA repair reactions, that seal broken RNAs with 2',3'-cyclic phosphate and 5'-OH ends. Parsimony and energetics would suggest a one-step mechanism for RtcB sealing via attack by the O5' nucleophile on the cyclic phosphate, with expulsion of the ribose O2' and generation of a 3',5'-phosphodiester at the splice junction. Yet we find that RtcB violates Occam's razor, insofar as (i) it is adept at ligating 3'-monophosphate and 5'-OH ends; (ii) it has an intrinsic 2',3'-cyclic phosphodiesterase activity. The 2',3'-cyclic phosphodiesterase and ligase reactions both require manganese and are abolished by mutation of the RtcB active site. Thus, RtcB executes a unique two-step pathway of strand joining whereby the 2',3'-cyclic phosphodiester end is hydrolyzed to a 3'-monophosphate, which is then linked to the 5'-OH end to form the splice junction. The energy for the 3'-phosphate ligase activity is provided by GTP, which reacts with RtcB in the presence of manganese to form a covalent RtcB-guanylate adduct. This adduct is sensitive to acid and hydroxylamine but resistant to alkali, consistent with a phosphoramidate bond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.