Abstract

Selenosemicarbazones show marked antitumor activity. However, their mechanism of action remains unknown. We examined the medicinal chemistry of the selenosemicarbazone, 2-acetylpyridine 4,4-dimethyl-3-selenosemicarbazone (Ap44mSe), and its iron and copper complexes to elucidate its mechanisms of action. Ap44mSe demonstrated a pronounced improvement in selectivity toward neoplastic relative to normal cells compared to its parent thiosemicarbazone. It also effectively depleted cellular Fe, resulting in transferrin receptor-1 up-regulation, ferritin down-regulation, and increased expression of the potent metastasis suppressor, N-myc downstream regulated gene-1. Significantly, Ap44mSe limited deleterious methemoglobin formation, highlighting its usefulness in overcoming toxicities of clinically relevant thiosemicarbazones. Furthermore, Cu-Ap44mSe mediated intracellular reactive oxygen species generation, which was attenuated by the antioxidant, N-acetyl-L-cysteine, or Cu sequestration. Notably, Ap44mSe forms redox active Cu complexes that target the lysosome to induce lysosomal membrane permeabilization. This investigation highlights novel structure-activity relationships for future chemotherapeutic design and underlines the potential of Ap44mSe as a selective anticancer/antimetastatic agent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.