Abstract
Six novel alkaloids that contain a fused tetracyclic pyrido[2,3,4-kl]acridine ring system were purified recently from the Red Sea purple tunicate Eudistoma sp. Evaluation of the effects of these alkaloids on cultured neuroblastoma and fibroblast cells revealed that they possess potent growth regulatory properties, and affect cell shape and adhesion. In mouse neuroblastoma cells, the Eudistoma alkaloids inhibited cell proliferation and induced a process of differentiation during which the cells flattened onto the surface, increased considerably in size, and extended long neurites. In hamster fibroblasts the alkaloids slowed down cell multiplication, and caused an exceptional cell flattening or elongation. In a virus-transformed derivative of the hamster fibroblasts the alkaloids restored many aspects of normal cell growth and morphology. In addition, several of the alkaloids mimicked the effects of cAMP analogs on two well-characterized cAMP-mediated processes involved in hepatic glucose metabolism--inhibition of pyruvate kinase (PK) activity and induction of mRNA for phosphoenolpyruvate carboxykinase (PEPCK). All these effects suggest that the Eudistoma alkaloids may act on the cAMP signaling system. However, a single application of these compounds was sufficient to completely block cell multiplication and to induce and sustain differentiation and "reverse transformation". Furthermore, these effects were not readily reversible following removal of the drugs. In contrast, a single application of agents that mimic or elevate cAMP induced a transient response that waned with time in culture, and the effects induced by constant elevation of cAMP reverse rapidly following drug removal. We propose that the Eudistoma alkaloids cause growth inhibition, differentiation, and reverse transformation by modifying the activity state of proteins that are involved in the regulation of cell shape and adhesion and serve as a target for the cAMP and/or other second messenger systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.