Abstract

Novel Mg-4.5Gd-3.4Y-2.6Ca (wt%) alloy is designed as a light-weight material for manufacturing aircraft parts. The alloy is characterized by good mechanical properties and exceptionally high ignition temperature, which is a critical safety measure. The material was prepared by casting and subsequently processed by extrusion at temperatures of 350 °C and 400 °C. The effect of extrusion on the microstructure, mechanical properties and ignition temperature is studied. The obtained results indicated a substantial effect of the extrusion temperature on the average grain size, the recrystallized fraction and texture formation. Microstructure condition directly affected the tensile and compressive behaviour with an observed average tensile yield strength of 302 MPa and 272 MPa for materials extruded at 350 °C and 400 °C, respectively. Both conditions featured a high ignition temperature of ≈ 1100 °C, which was attributed to the synergic effect of Y, Gd and Ca oxides, with the dominant effect of Y2O3. The achieved combination of enhanced mechanical properties and the ignition temperature makes this novel alloy a prominent candidate for aircraft applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.