Abstract
Eu(II) complexes are potential candidates for pO(2)-responsive contrast agents in magnetic resonance imaging. In this regard, we have characterized two novel macrocyclic Eu(II) chelates, [Eu(II)(DOTA)(H(2)O)](2-) and [Eu(II)(TETA)](2-) (H(4)DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, H(4)TETA=1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid) in terms of redox and thermodynamic complex stability, proton relaxivity, water exchange, rotation and electron spin relaxation. Additionally, solid-state structures were determined for the Sr(II) analogues. They revealed no inner-sphere water in the TETA and one inner-sphere water molecule in the DOTA complex. This hydration pattern is retained in solution, as the (17)O chemical shifts and (1)H relaxation rates proved for the corresponding Eu(II) compounds. The thermodynamic complex stability, determined from the formal redox potential and by pH potentiometry, of [Eu(II)(DOTA)(H(2)O)](2-) (lg K(Eu(II))=16.75) is the highest among all known Eu(II) complexes, whereas the redox stabilities of both [Eu(II)(DOTA)(H(2)O)](2-) and [Eu(II)(TETA)](2-) are inferior to that of 18-membered macrocyclic Eu(II) chelates. Variable-temperature (17)O NMR, NMRD and EPR studies yielded the rates of water exchange, rotation and electron spin relaxation. Water exchange on [Eu(II)(DOTA)(H(2)O)](2-) is remarkably fast (k298(ex)=2.5 x 10(9) s(-1)). The near zero activation volume (DeltaV++ =+0.1+/-1.0 cm(3) mol(-1)), determined by variable-pressure (17)O NMR spectroscopy, points to an interchange mechanism. The fast water exchange can be related to the low charge density on Eu(II), to an unexpectedly long M-O(water) distance (2.85 A) and to the consequent interchange mechanism. Electron spin relaxation is considerably slower on [Eu(II)(DOTA)(H(2)O)](2-) than on the linear [Eu(II)(DTPA)(H(2)O)](3-) (H(5)DTPA=diethylenetriaminepentaacetic acid), and this difference is responsible for its 25 percent higher proton relaxivity (r(1)=4.32 mM(-1) s(-1) for [Eu(II)(DOTA)(H(2)O)](2-) versus 3.49 mM(-1) s(-1) for [Eu(II)(DTPA)(H(2)O)](3-); 20 MHz, 298 K).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.