Abstract

A series of novel luminescent nanostructured coordination polymers (Ce-Ru-NCPs) with tunable morphologies have been successfully synthesized on a large scale at room temperature by a facile and rapid solution-phase method using Ce3+ and tris(4,4'-dicarboxylicacid-2,2'-bipyridyl) ruthenium(II) dichloride (Ru(dcbpy)32+). Among them, the flowerlike Ce-Ru-NCP shows good cathodic electrochemiluminescence (ECL) characteristics. The ECL efficiency of the Ce-Ru-NCP/S2O82- system is about 2.34 times that of the classic tris(2,2'-bipyridyl) ruthenium(II) dichloride/S2O82- (Ru(bpy)32+/S2O82-) system. Hence, we report a sensitive ECL biosensor for microRNA-141 (miRNA-141) detection based on the flowerlike Ce-Ru-NCP as a cathodic ECL luminophore and a bipedal three-dimensional (3D) DNA walking machine as a signal amplifier. Through the bipedal 3D DNA walking machine, trace targets can be converted to substantial secondary targets (marked with the quencher dopamine), and a significant quenching effect on the ECL signal is achieved. As a result, the proposed biosensor exhibits a relatively good sensitivity for miRNA-141 detection and shows a dynamic range from 1.0 × 10-16 to 1.0 × 10-6 mol·L-1 with a limit of detection (LOD) of 33 amol·L-1 (S/N = 3). The Ce-Ru-NCP with tunable morphologies and high ECL efficiency, intensity, and stability possesses potential applications in ECL analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call