Abstract

Due to the high surface tension and high conductivity, water is unsuitable for electrohydrodynamic (EHD) atomization using a DC electric field in air. The high local electric field, that is required to atomize water, is likely to generate corona discharge and consequently destabilize the atomization process. This study describes a novel low voltage EHD spray nozzle that can be used to atomize water and weak saline solutions in the stable cone jet mode. The properties of the atomization have been investigated together with the generated droplet size distribution. The nozzle operates at very low flow rates (0.5–4.0 μl/min). Due to the high dielectric constant of water and the low flow rate, the atomization takes place outside the applicability range of the scaling laws. The experimental results show that the droplet size is approximately constant when the flow rate is increased from 0.5 to 4.0 μl/min. The atomization of water was numerically simulated using computational fluid dynamics (CFD). The simulation results agree reasonably well with the experimental results with respect to the liquid cone shape and droplet size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call