Abstract
In recent years considerable progress has been made in electronic packaging substrate technology. The future need of miniaturization of devices to increase the signal processing speed calls for an increase in the device density requiring the substrates to be designed for better thermal, mechanical and electrical efficiency. Fast signal propagation with minimum delay requires the substrate to possess very low dielectric constant. Several glasses and glassceramic materials have been identified over the years which show good promise as candidate substrate materials. Among these, borophosphate and borophosphosilicate glass-ceramics have been recently identified to have the lowest dielectric constant (3.8). Sol-gel processing has been used to synthesize borosilicate, borophosphosilicate and borophosphate glasses and glass-ceramics using inexpensive boron oxide and phosphorus pentoxide precursors. Preliminary results of the processing of these gels and the effect of volatility of boron alkoxide and its modification on the gel structure are described. X-ray diffraction, differential thermal analysis and Fourier transform-infrared spectroscopy have been used to characterize the as-as-prepared and heat-treated gels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.