Abstract

A novel star-shaped small monomer SM containing a 1,3,5-triazine core and arms with terminal cyanovinylene 4-nitrophenyls was synthesized. Moreover, an alternating p-phenylenevinylene copolymer P containing thiophene with cyanovinylene 4-nitrophenyl side segments was synthesized by Heck coupling. Both SM and P showed broad absorption spectra with long-wavelength maximum at 630−648 nm, which for P is attributable to an intramolecular charge transfer. The optical band gap was 1.57 eV for SM and 1.70 eV for P. Both SM and P were blended with PCBM to study the donor−acceptor interactions on the blend film morphology and device characteristics of organic bulk heterojunction solar cells. A combination of characterization techniques including X-ray diffraction and optical topographical images were used to investigate the film morphology. The HOMO and LUMO levels of both SM and P are well-aligned with those of the PCBM acceptor, allowing efficient electron transfer and suitable open circuit voltage, leading to overall power conversion efficiencies (PCEs) of 2.53 and 1.43% for SM:PCBM and P:PCBM-based devices, respectively. The thermal annealing leads to suitable phase separation due to the increase in crystallinity of donor material and material distribution so that highly effective bulk heterojunction morphologies are obtained which further increases the PCE up to 3.82% and 2.37% for SM:PCBM and P:PCBM-based devices, respectively. These results are preliminary based on the illumination without using a solar simulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.