Abstract
Scheduling cloud resources calls for allocating cloud assets to cloud tasks. It is possible to improve scheduling outcomes by treating Quality of Service (QoS) factors as essential constraints. However, efficient scheduling calls for improved optimization of QoS parameters, and only a few resource scheduling algorithms in the available literature do so. The primary objective of this paper is to provide an effective method for deploying workloads to cloud infrastructure. To ensure that workloads are executed efficiently on available resources, a resource scheduling method based on particle swarm optimization was developed. The proposed method's performance has been measured in the cloud. The experimental results prove the efficiency of the proposed approach in reducing the aforementioned QoS parameters. Several metrics of algorithm performance are used to gauge how well the algorithm performs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Recent and Innovation Trends in Computing and Communication
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.