Abstract

Elevated thioredoxin-interacting protein (TXNIP)-induced pyroptosis contributes to the pathology of diabetic kidney disease (DKD). However, the molecular mechanisms in dysregulated TXNIP in DKD remain largely unclear. Transcriptomic analysis identified a novel long noncoding RNA-Prader Willi/Angelman region RNA, SNRPN neighbour (PWARSN)-which was highly expressed in a proximal tubular epithelial cell (PTEC) under high glucose conditions. We focused on revealing the functions of PWARSN in regulating TXNIP-mediated pyroptosis in PTECs by targeting PWARSN expression via lentivirus-mediated overexpression and CRISPR-Cas9-based knockout in vitro and overexpressing PWARSN in the renal cortex by AAV-9 targeted injection in vivo. A number of molecular techniques disclosed the mechanisms of PWARSN in regulating TXNIP induced-pyroptosis in DKD. TXNIP-NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and PTEC pyroptosis were activated in the renal tubules of patients with DKD and in diabetic mice. Then we explored that PWARSN enhanced TXNIP-driven PTECs pyroptosis in vitro and in vivo. Mechanistically, cytoplasmic PWARSN sponged miR-372-3p to promote TXNIP expression. Moreover, nuclear PWARSN interacted and facilitated RNA binding motif protein X-linked (RBMX) degradation through ubiquitination, resulting in the initiation of TXNIP transcription by reducing H3K9me3-enrichment at the TXNIP promoter. Further analysis indicated that PWARSN might be a potential biomarker for DKD. These findings illustrate distinct dual molecular mechanisms for PWARSN-modulated TXNIP and PTECs pyroptosis in DKD, presenting PWARSN as a promising therapeutic target for DKD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call