Abstract

The development of advanced nanomaterials for the highly efficient electrical detection of biological species has attracted great attention. Here, novel polypyrrole-Pluronic F127 nanoparticles (PPy-F127 NPs) with conducting and biocompatibility properties were synthesized and used to construct a L-lactic acid biosensor that could be applied in biochemical assays. The PPy-F127 NPs were characterized by transmission electron microscopy (TEM), elemental analysis and UV-vis spectroscopy. Lactate oxidase (LOx) structure variation on the PPy-F127 NPs was investigated by circular dichroism (CD). The cyclic voltammetric results indicated that LOx immobilized on the PPy-F127 NPs exhibited direct electron transfer reaction with a formal potential value (E(0)') of 0.154 V vs. SCE. Moreover, the biosensor had good electrocatalytic activity toward L-lactic acid with a wide linear range (0.015-37.5 mM) and a low detection limit of 0.0088 mM. The regression equation was I (μA) = 0.02353c (mM) + 1.4135 (R(2) = 0.9939). The L-lactic acid biosensor had a good anti-interference property towards uric acid (UA), ascorbic acid (AA), glucose and cysteine. The idea and method provide a promising platform for the rapid development of biosensors that can be used in the detection of biological species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.