Abstract

The frequent administration rate required for Glatiramer acetate (GA), a first-line therapy for Multiple sclerosis (MS), poses patient compliance issues. Only a small portion of the subcutaneously administered GA is available for phagocytosis by macrophages, as most of it is hydrolyzed at its administration site or excreted renally.To unravel these hurdles, we have prepared liposomal formulations of GA through thin film-hydration method plus extrusion. The clinical and histopathological efficacy of GA-loaded liposomes were assessed in prophylactic and therapeutic manners on murine model of MS (experimental autoimmune encephalomyelitis (EAE)).The selected GA liposomal formulation showed favorable size (275 nm on average), high loading efficiency, and high macrophage localization. Moreover, administration of GA-liposomes in mice robustly suppressed the inflammatory responses and decreased the inflammatory and demyelinated lesion regions in CNS compared to the free GA with subsequent reduction of the EAE clinical score.Our study indicated that liposomal GA could be served as a reliable nanomedicine-based platform to hopefully curb MS-related aberrant autoreactive immune responses with higher efficacy, longer duration of action, fewer administration frequencies, and higher delivery rate to macrophages. This platform has the potential to be introduced as a vaccine for MS after clinical translation and merits further investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call