Abstract

AbstractProduction of piezo‐resistive auxetic sensors is usually carried out through mixing and coating methods. Although these methods are beneficial, Young's modulus of mixed sensors becomes high because of using a high percentage of sensing elements while the durability of coated sensors gets low due to the separation of sensing elements from the sensor surface. This article presents a new core–shell metamaterial model to address the mentioned problems. The shell and the core are produced of polydimethylsiloxane (PDMS) rubber and a mixture of PDMS/graphite powders (73.45 wt% graphite powders), respectively. A finite element model is developed via COMSOL software to predict the electromechanical behaviors of the created sensor and verified by an experimental study. Scanning electron microscope imaging is conducted to detect the separations of the graphite particles. The main important feature of this meta‐sensor is to possess a linear sensitivity due to having zero Poisson's ratio. The advantage of this method is that Young's modulus of the sensor does not decrease (unlike the mixing method), and the sensor‐coated particles do not separate from the sensor after a while (unlike the coating method). The introduced model has advantages that promote potential applications such as using sensory gloves to detect, for instance, human hand movements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.