Abstract
<span lang="EN-US">In the recent years, an increasing demand for securing visual resource-constrained devices become a challenging problem due to the characteristics of these devices. Visual resource-constrained devices are suffered from limited storage space and lower power for computation such as wireless sensors, internet protocol (IP) camera and smart cards. Consequently, to support and preserve the video privacy in video surveillance system, lightweight security methods are required instead of the existing traditional encryption methods. In this paper, a new light weight stream cipher method is presented and investigated for video encryption based on hybrid chaotic map and ChaCha20 algorithm. Two chaotic maps are employed for keys generation process in order to achieve permutation and encryption tasks, respectively. The frames sequences are encrypted-decrypted based on symmetric scheme with assist of ChaCha20 algorithm. The proposed lightweight stream cipher method has been tested on several video samples to confirm suitability and validation in term of encryption–decryption procedures. The performance evaluation metrics include visual test, histogram analysis, information entropy, correlation analysis and differential analysis. From the experimental results, the proposed lightweight encryption method exhibited a higher security with lower computation time compared with state-of-the-art encryption methods.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.