Abstract

Recently we reported using minilibraries to replace Lys(9) [somatostatin (SRIF) numbering] of the potent somatostatin agonist L-363,301 (c[-Pro-Phe-D-Trp-Lys-Thr-Phe-]) to generate the potent neurokinin receptor (NK-1) antagonist c[-Pro-Phe-D-Trp-p-F-Phe-Thr-Phe-]. This novel cyclic hexapeptide did not bind the SRIF receptor. Thus, a single mutation converted L-363,301, a SRIF agonist with potency ca. 2-8 times the potency of SRIF in laboratory animals,(24) into a selective NK-1 receptor antagonist with an IC(50) of 2 nM in vitro. During the screening of the same libraries for ligands of the delta-opioid receptor, we identified four compounds (1-4) which represent a new class of delta-opioid antagonists, some of which were also NK-1 receptor antagonists. The most potent delta-opioid antagonist, c[-Pro-1-Nal-D-Trp-Tyr-Thr-Phe-] (2), showed a K(e) value of 128 nM in the mouse vas deferens assay and a delta-receptor binding affinity constant of 152 nM in the rat brain membrane binding assay. These results are of interest because they represent a novel class of delta-opioid antagonists and, like two previously reported delta-opioid antagonists, they lack a positive charge. To examine further the requirement for a positive charge in the delta-opioid ligands, we prepared two analogues of the beta-casomorphin-derived mixed mu-agonist/delta-antagonist, H-Dmt-c[-D-Orn-2-Nal-D-Pro-Gly-] (7), in which we eliminated the positive charge either through formylation of the primary amino group (5) or by the deletion of this N-terminal amino group (6). These latter compounds proved to be delta-opioid antagonists with K(e) values in the 16-120 nM range, as well as fairly potent mu-opioid antagonists (K(e) approximately 200 nM). These six compounds provide the most convincing evidence to date that there is no requirement for a positive charge in mu- and delta-opioid receptor antagonists. In addition, cyclic hexapeptide 4 lacks a phenolic hydroxyl group. Taken together, these data suggest that the prevailing assumptions about delta- and mu-opioid receptor binding need revision and that the receptors for these opioid ligands have much in common with the NK-1 and somatostatin receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.