Abstract

Layered two-dimensional (2D) semiconductors beyond graphene have been emerging as potential building blocks for the next-generation electronic/photonic applications. Representative metal chalcogenides, including the widely studied MoS2, possess similar layered crystal structures with weak interaction between adjacent layers, thus allowing the formation of stable thin-layer crystals with thickness down to a few or even single atomic layer. Other important chalcogenides, involving earth-abundant and environment-friendly materials desirable for sustainable applications, include SnS2 (band gap: 2.1 eV) and SnS (band gap: 1.1 eV). So far, commonly adopted for research purpose are mechanical and liquid exfoliation methods for creating thin layers of such 2D semiconductors. Most recently, chemical vapor deposition (CVD) was attracting significant attention as a practical method for producing thin films or crystal grains of MoS<sub>2</sub>. However, critical yet still absent is an effective experimental approach for controlling the positions of thin crystal grains of layered 2D semiconductors during the CVD process. Here we report the controlled CVD synthesis of thin crystal arrays of representative layered semiconductors (including SnS<sub>2</sub> and SnS) at designed locations on chip, promising large-scale optoelectronic applications. Our work opens a window for future practical applications of layered 2D semiconductors in integrated nano-electronic/photonic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call