Abstract

The abnormal levels of two biological molecules, dopamine (DA) and Uric acid (UA), in human body are symptoms of diseases such as Parkinson's disease and arrhythmia. A novel lanthanum vanadate and multi-walled carbon nanotubes (LaV-MWCNTs) composite modified glassy carbon electrode (GCE) was developed and utilized as an efficient electrochemical sensor for the simultaneous detection of DA and UA. LaV-MWCNTs composite was successfully fabricated by a facile ultrasonic self-assembly method and identified by means of a series of successive measurements including XPS, XRD, FT-IR and FE-SEM. The LaV-MWCNTs modified GCE shows the concentration linear ranges of DA and UA are 2–100 μΜ using DPV. The limits of detection (LODs; signal-to-noise ratio of 3, S/N = 3) of the LaV-MWCNTs modified GCE sensor for DA and UA were calculated to be 0.046 μM and 0.025 μM, respectively. The feasibility of using the LaV-MWCNTs modified GCE sensor to detect DA and UA in a typical biological fluid, fetal bovine serum, was also evaluated by the standard addition method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call