Abstract

Natural Egyptian bentonite clay intercalated with both La and Ni having different molar ratio (La: Ni = 2:1, 1:1 & 1:2) were prepared, saving 5mmole pillar/gm clay, using ultrasonic assistance method. The prepared catalysts were calcined at 450 and then reduced at 400 °C & 600 °C.Characterization of the prepared LaNi-PILC was achieved by X-ray diffraction (XRD), Furrier transform infrared spectroscopy (FTIR), N2 adsorption desorption isotherm (BET) and H2-temperature programmed reduction (H2-TPR). The data confirm the success of intercalation process for both La & Ni in the lamellar structure of bentonite clay. The La: Ni molar ratio affected the specific surface area, Ni crystal size, dispersion and reducibility of the prepared catalyst. The reduction temperature had a great effect on the reactivity and product selectivity during CO2/CH4 reforming at different reaction temperatures (600–800 °C). Where, reduction at 400 °C gives rise to CH4 oxidation reaction (MOR) with formaldehyde as a main product. While reduction at 600 °C enhances the activity and stability for CO2 reforming of methane (CRM) and syngas production (H2/CO ~ 1.19). The most active and stable LaNi1:2-PILC5 catalyst (CO2 and CH4 conversions reached 85% and 90% respectively) is superior with respect to the performance of PILC based catalysts reported in the literatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call