Abstract
Enhanced oil recovery (EOR) from shale oil formations is recognized as the next frontier in the exploitation of unconventional resources. Current approaches for performing EOR experiments using fractured rocks can generate misleading results as the fractured cores cannot be saturated with live oils. In this work, a novel laboratory methodology is developed to quantify the efficiency of gas huff-n-puff in shale oil formations under realistic reservoir conditions, i.e. live oil and hydraulic fracturing reservoir conditions. This new approach involves first saturating the shale core with oil and then hydraulic fracturing the oil-saturated core by increasing pore pressure above the core confining pressure. To demonstrate the viability of this new methodology, shale cores from the Haynesville formation with a permeability of 0.0001 mD were tested.Two huff-n-puff experiments were performed by the injection of associated gas into cores saturated with either dead crude oil or live oil. 48% additional oil recovery was achieved from the shale core saturated with live oil whereas, the shale core saturated with dead oil yielded a 33% enhanced oil recovery, which is significantly lower than that of the live oil. Furthermore, the pressure decay profiles during the soaking periods indicate a comparatively higher gas penetration into the live oil system despite the higher gas solubility in the dead oil. The in-situ gas formation can have a strong influence on the efficiency of huff-n-puff. The notable differences in the results obtained on live compared to dead oil experiments demonstrate the need to perform more realistic laboratory experiments to better optimize shale oil EOR-based extractions in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Fuel
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.