Abstract

A Kumada cross-coupling reaction involving organomagnesium reagents and (3-methylthio-2-azaallyl)stannanes with a Ni(0) catalyst provided cyclic nonstabilized (2-azaallyl)stannanes in moderate to good yields. Primary alkyl, aryl, and allylic organomagnesium reagents can be used as the cross-coupling partner. In general, NiCl(2)dppp in toluene at room temperature provided the shortest reaction times and most consistent yields. The azomethine ylides and 2-azaallyllithium species derived from these stannanes were shown to undergo efficient [3 + 2] cycloaddition reactions to provide azabicyclo[n.2.1]alkanes as the endo cycloadducts. These cycloadducts were found to be useful as starting materials for further elaboration into aza-bridged bicyclic natural and unnatural products of biological interest. Although cyclic 2-azaallyllithium species have been generated previously, this work reports the first generation and cycloaddition of entirely nonstabilized 2-azaallyllithium species. In addition a novel extension of the Kumada coupling was developed to allow for the preparation of the cyclic (2-azaallyl)stannanes, which are precursors to the nonstabilized 2-azaallyllithium species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.