Abstract
Unsupervised cross-domain fault diagnosis of bearings has practical significance; however, the existing studies still face some problems. For example, transfer diagnosis scenarios are limited to the experimental domain, cross-domain marginal distribution and conditional distribution are difficult to align simultaneously, and each source-domain sample is assigned with equal importance during the domain adaptation process. Aiming at the above-mentioned challenges, this article proposes a novel joint transfer network for unsupervised bearing fault diagnosis from the simulation domain to the experimental domain. The sufficient bearing simulation data containing rich fault label information are used to construct the source domain to reduce the dependence on the resources of laboratory test rigs. An improved loss function embedded with joint maximum mean discrepancy is designed to achieve simultaneous alignments of marginal and conditional distributions across domains in unsupervised scenarios. A weight allocation mechanism for each source-domain sample is developed to suppress negative transfer. Two experimental datasets collected from laboratory test rigs are used as the target domains to validate the effectiveness of the proposed method. The results show that the proposed method is superior to other popular unsupervised cross-domain fault diagnosis methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.