Abstract

Protein glycosylation, covalent attachment of carbohydrates to polypeptide chains, is a highly important post-translational modification involved in many essential physiological processes. Comprehensive site-specific and quantitative analysis is crucial for revealing the diverse functions and dynamics of glycosylation. To characterize intact glycopeptides, mass spectrometry (MS)-based glycoproteomics employs versatile fragmentation methods, among which electron-transfer/higher-energy collision dissociation (EThcD) has gained great popularity. However, the inherent limitation of EThcD in fragmenting low-charge ions has prevented its widespread applications. Furthermore, there is a need to develop a high-throughput strategy for comparative glycoproteomics with a large cohort of samples. Herein, we developed isobaric N,N-dimethyl leucine-derivatized ethylenediamine (DiLeuEN) tags to increase the charge states of glycopeptides, thereby improving the fragmentation efficiency and allowing for in-depth intact glycopeptide analysis, especially for sialoglycopeptides. Moreover, the unique reporter ions of DiLeuEN-labeled glycopeptides generated in tandem MS spectra enable relative quantification of up to four samples in a single analysis, which represents a new high-throughput method for quantitative glycoproteomics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call