Abstract

Novel ligands that bind irreversibly and selectively to "peripheral" type benzodiazepine receptors (PBR) have been prepared. These compounds inhibit radiolabeled binding to PBR in the nanomolar range. The 2-isothiocyanatoethyl analogue of Ro 5-4864 (1-methyl-7-chloro-1,3-dihydro-5-(4-chlorophenyl)-2H-1,4-benzodiazepi n-2-one) (5, AHN 086) was synthesized in three steps from desmethyl Ro 5-4864. The (+/-) (11a, AHN 070), R-(-) (11b), and S-(+) (11c) 2-isothiocyanatoethyl derivatives of PK 11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carboxami de) were each prepared in three steps from PK 11209 (1-(2-chlorophenyl)-3-isoquinolinecarboxylic acid, 6). All four compounds inhibited radioligand binding to the PBR in brain and kidney. The R-(-) stereoisomer 11b was observed to be approximately 2.5-fold more potent than its enantiomer 11c; this is the first report of stereoselectivity in the isoquinoline series of ligands selective for the PBR. Furthermore, pH dependency studies showed that, at lower pH, change in the affinities for the PBR ligands is a property of the receptor, substantiating the hypothesis that a histidine moiety on the PBR is the most likely site for covalent bond formation, whereas, at higher pH, the observed changes in affinities can be attributed to properties of the compounds. All four of these novel ligands are potentially useful tools in the investigation of the PBR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.