Abstract

In this study, functional performance of Ni/Cr3C2 functionally graded claddings (FGCs) was investigated under dry sliding wear environment. The Ni/Cr3C2-based FGCs were produced by varying Cr3C2 fraction (Ni-XCr3C2) (X=10%–30% by weight) using microwave irradiation. The FGC layers were composed of cellular-structure with reinforced particles dispersed randomly inside Ni-based matrix. Variation of Cr3C2 particles inside Ni matrix exhibited significant impact on micro-structural and mechanical properties. The microhardness profile of the FGC layers showed an increase in hardness value with an increase in the amount of reinforced Cr3C2 particles. FGC top layers showed the maximum value of micro-hardness of 555 ± 34 HV. Functional performance of microwave processed FGCs was studied through the pin-on-disk tribometer under varying sliding velocity and sliding distances. For comprehension study, wear study was also carried out on microwave processed single layer clads with compositions corresponding to FGC layers. The FGC sample showed better wear resistance than all single clad layers and substrate material. The FGC sample exhibited 1.6 times less wear rate than the Ni-based + 30% Cr3C2 single layer clad. The worn-out surfaces of FGC and single-layer-clads showed presence of multiples cracks and grooves, which resulted in their weight loss during dry sliding contact. Material debonding and the formation of craters and cracks are the main phenomena responsible for the wear loss in the FGC surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.