Abstract

A new ultrafiltration technique based on a multimembrane stack has been developed to fractionate proteins closer in molecular weight than conventionally possible. The technique is illustrated here by obtaining a pure protein product from a binary protein mixture. By employing membranes in series using the same membrane without any gaskets or spacers in-between, ultrafiltration is carried out to separate two proteins relatively close in molecular weight. Either flat YM100 regenerated cellulose membranes or Omega 100 K polyethersulfone membranes, of the same molecular weight cutoff (MWCO) 100,000, are stacked together in the desired number, and ultrafiltration takes place. The membrane rejection of a protein is amplified with each additional membrane, ultimately resulting in a completely rejected species. Complete purification of the more permeable protein may be achieved by operating under a physicochemical condition that is optimal for selective separation by a single membrane. The separation of hemoglobin (MW 64,677) and bovine serum albumin (BSA, MW 66,430) was studied under various operating conditions; the molecular weight ratio is 1.03. Complete rejection of bovine serum albumin was achieved using three Omega 100 K membranes one on top of the other. To achieve complete rejection in a multimembrane stack, the single membrane rejection must be considerable. Cleaning in situ was achieved with reproducible experimental results before and after on-line cleaning. The results clearly demonstrate that multimembrane stacks can be used for fractionation of proteins that are quite close in molecular weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.