Abstract

We develop a novel approach to improve the robustness of the interface between the hydrocarbon (HC) membrane and the perfluorosulfonic acid (PFSA) ionomer-based catalyst layer (CL) in membrane electrode assemblies (MEAs). This approach involves the creation of a gradient-composition interfacial bonding layer, in which the HC and PFSA contents are gradually varied along the thickness direction. The layer is fabricated using a simple spray-coating method, in which HC and PFSA ionomer mixtures with different compositions are sprayed stepwise onto both sides of the HC membrane surface. The interfacial structure developed in this process minimizes the chemical incompatibility between the HC and PFSA polymers. Owing to the tightly bound sublayers resulting from the intertwined HC and PFSA microdomains, the gradient-composition bonding layer provides a significantly improved interfacial adhesion strength (14 times higher than that of the pristine membrane without bonding layer) between the HC membrane and the PFSA-based CL. Finally, the fabricated MEA exhibits a >433% higher durability in humidity cycling tests compared with the pristine MEA without interfacial bonding layer, together with a better retention of its initial performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.