Abstract

BackgroundAssessing nociception and sedation in mechanically ventilated patients in the ICU is challenging, with few reliable methods available for continuous monitoring. Measurable cardiovascular and neurophysiological signals, such as frontal EEG, frontal EMG, heart rate, and blood pressure, have potential in sedation and nociception monitoring. The hypothesis of this explorative study is that derived variables from the aforementioned signals predict the level of sedation, as described by the Richmond Agitation-Sedation score (RASS), and respond to painful stimuli during critical care.MethodsThirty adult postoperative ICU patients on mechanical ventilation and receiving intravenous sedation, excluding patients with primary neurological disorders, head injury, or need for continuous neuromuscular blockage. Bispectral Index (BIS), EMG power (EMG), EMG-derived Responsiveness Index (RI), and averaged blood pressure variability (ARV) were tested against RASS measurements. The aforementioned variables together with blood pressure and Surgical Pleth Index (SPI) were explored before and after painful stimuli (for example bronchoscopy, or pleural puncture) at varying RASS levels, to test variable responsiveness.ResultsBIS, EMG, and RI predicted RASS levels with a prediction probability (PK) of 0.776 for BIS, 0.761 for EMG, and 0.763 for RI. In addition, BIS, EMG, and ARV demonstrated responsiveness to painful stimuli during deep sedation (RASS score ≤ -3).ConclusionVariables derived from EEG and EMG are associated with sedation levels, as described by the RASS score. Furthermore, these variables, along with ARV, react with consistency to painful stimuli during deep sedation (RASS -5 to -3), offering novel tools for nociception-sedation monitoring of mechanically ventilated ICU patients requiring deep sedation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call