Abstract
In this study, the effects of Ball milling (BM) pretreatment (0–240 min) on the microstructure, physicochemical properties and subsequent methanogenesis performance of corn straw (CS) were explored, and the feasibility analysis was carried out. The results showed that BM pretreatment destroyed the dense structure of the CS, and the particle size was significantly reduced (D50: 13.85 μm), transforming it into a cell-scale granular form. The number of mesopores increased, the pore volume (PV) (0.032 cm3/g) and specific surface area (SSA) (4.738 m2/g) considerably increased, and the water-absorbent property was improved. The crystalline order of cellulose was disrupted and the crystallinity (CrI) (8.61 %) and crystal size (CrS) (3.37) were remarkably reduced. The cross-links between lignocelluloses were broken, and the relative content and functional groups did not alter obviously. The bulk density (BD), repose angle (RA) and slip angle (SA) dramatically increased. As a result, CS was more readily accessible, attached and utilized by microorganisms and enzymes, causing the hydrolysis and acidification of AD to be greatly facilitated. Compared with the untreated group, the cumulative methane production (CMP) increased by 35.83 %–101.97 %, and the lag phase time (λ) was shortened by 33.04 %–71.17 %. The results of redundancy analysis, Pearson analysis and Mantel test showed that BM pretreatment affects the process of AD by changing the physicochemical factors of CS. The normalization analysis showed that particle size (D90) and BD can be used as direct indicators to evaluate the performance of AD and predict the threshold of biodegradation of CS. Energy analysis and energy conversion assessment showed that BM is a green and efficient AD pretreatment strategy. This result provides a theoretical basis for the industrial application of BM pretreatment towards more energy-efficient and sustainable development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.