Abstract

The study of potentially toxic element (PTE) hazards around e-waste recycling areas has attracted increasing attention but does not consider elemental bioaccessibility. Here, the respiratory and oral bioaccessibilities were incorporated into probabilistic health risk evaluation and source contribution apportionment. The results showed that soil Cd yielded the highest respiratory and oral bioaccessibility, whereas Cr in soils and vegetables attained the lowest oral bioaccessibility. When incorporating metal bioaccessibility into health risk assessment, a 48.3%–55.7% overestimation of non-cancer and cancer risks can be avoided relative to the risk assessment based on the total concentrations of PTEs. More importantly, priority control metals were misidentified without consideration of bioaccessibility. Cadmium, As, and Cr were screened as the priority metal(loid)s for targeted risk control based on the total PTEs, whereas Cd, Zn, and Cu were the priority metal(loid)s based on the bioaccessible PTEs. Furthermore, source apportionment revealed that >50% of oral bioaccessible Cd, Cu, Ni, Pb, and Zn in farmland were contributed by e-waste dismantling activities, whereas bioaccessible As and Cr mainly originated from agrochemical applications and natural sources, respectively. This study emphasizes the refinement of risk estimation and source apportionment through metal bioaccessibility adjustment, which facilitates the realistic assessment of adverse health effects in humans and the precise identification of high-risk sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.