Abstract

Previous observational studies have explored the association between serum lipids, apolipoproteins, and adverse ventricular/aortic structure and function. However, whether a causal link exists is uncertain. This study employed a two-sample Mendelian randomization (MR), colocalization, reverse, and multivariable MR (MVMR) approach to examine the causal associations among five serum lipids, two apolipoproteins, and 32 cardiac magnetic resonance (CMR) traits. Utilizing single-nucleotide polymorphisms (SNPs) linked to serum lipids and apolipoproteins as instrumental variables. CMR traits from seven independent genome-wide association studies served as preclinical endophenotypes, offering insights into aortic and cardiac structure/function. The primary analysis utilized a random-effects inverse variance method (IVW), followed by sensitivity and validation analyses. In the primary IVW MR analyses, genetically predicted low-density lipoprotein cholesterol (LDL-C) levels were positively correlated with increased descending aorta strain (DAo strain) (β = 0.098; P = 2.69E-07) and ascending aorta strain (AAo strain) (β = 0.079; P = 5.19E-05). Genetically predicted high-density lipoprotein cholesterol (HDL-C) levels were positively correlated with left ventricular radial peak diastolic strain rate (LV-PDSRll) (β = 0.176; P = 2.89E-05) and the left ventricular longitudinal peak diastolic strain rate (LV-PDSRrr) (β = 0.059; P = 2.44E-06), and negatively correlated with left ventricular regional wall thickness (LVRWT). While apolipoprotein B (ApoB) levels were positively correlated with AAo strain (β = 0.076; P = 1.16E-05), DAo strain (β = 0.065; P = 2.77E-05). A shared causal variant was identified to demonstrate the associations of ApoB with AAo strain and DAo strain using colocalization analysis. Sensitivity analyses confirmed the robustness of these associations. Targeting lipid and apolipoprotein levels through interventions may provide novel strategies for the primary prevention of CVDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.