Abstract

The crucial role of the fluorescent components of dissolved organic matter (DOM) in controlling antimony (Sb) mobilization in groundwater has been confirmed. However, the molecular signatures contributing to Sb enrichment in DOM remain unknown. This study aims to investigate the origins and molecular compositions of DOM in different high-Sb aquifers (Sb-mining and no-Sb-mining aquifer), as well as compare different molecular signatures of DOM and mechanisms for Sb migration. The findings showed that Sb concentrations in Sb-mining aquifer exhibited a positive correlation with lignin- and tannin-like molecules characterized by high O/C and low H/C ratios, indicating an increased abundance of aromatic components with higher Humification Index and SUV-absorbance at 254 nm, compared to no-Sb-mining aquifer. Correspondingly, the complexation and competitive adsorption were considered as the predominate formation mechanisms on Sb enrichment in Sb-mining aquifer. In addition, high abundances of bioreactivity DOM may facilitated the migration of Sb via electron transfer and competitive adsorption in native no-Sb-mining aquifer. The outcomes of this investigation offer novel insights into the mechanism on Sb enrichment influenced by DOM at the molecule level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call