Abstract

Dry-wet combined anaerobic digestion is a novel approach for treating lignocellulosic waste by increasing the organic load of reactor while accelerating the conversion of organic acids. Here, we investigated the effect of regulated substrate ratios and initial pH in the dry acidogenesis stage on the bioconversion efficiency of dry-wet combined anaerobic digestion. Our data revealed microbial interactions and further identified key microbes based on microbial co-occurrence network analysis. On day three of acidification, the kinetic hydrolysis rate and acidification yield reached 1.66 and 60.07%, respectively; this was attributed to enhancement of the synergistic effect between Clostridiales and Methanosaeta, which increased the proportion of corn straw in the substrate or lowered the initial spray slurry pH to 5.5–6.5. With increased acidification capacity, acetoclastic methanogens were enriched in the wet methanogenesis stage; the syntrophic effect of Syntrophomonadales, Syntrophobacterales and Methanospirillum, meanwhile, was enhanced, leading to an overall improvement in biogas production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call