Abstract

Knowledge of endogenous-source dissolved organic nitrogen (esDON) produced in wastewater treatment processes is critical for evaluating its potential impacts on receiving waters because esDON is a recognized concern, as it causes eutrophication. However, differentiating esDON from influent residual DON in real wastewater is always a challenge. Here, we deciphered esDON information in DON transformation processes along a full-scale wastewater treatment train by combining multiple chemometric tools with ion-mobility separation quadrupole time-of-flight mass spectrometry (IMS-QTOF MS) analyses. In total, DON became more refractory and compact with shorter carbon chains and fewer nitrogen atoms, and esDON composed a nonnegligible fraction that dominated DON transformation and characteristics. New esDON produced in treatment processes constituted a crucial part (>35.5%) of wastewater DON, and its contributions to wastewater DON are augmented along the train. Evidence of molecular conformations further confirmed dominant roles of esDON in DON characteristics. Moreover, esDON participated in 46.7% of core biochemical reaction networks, explaining the importance of esDON in DON transformation. Our study offers a tool to gain esDON characteristics and transformation mechanisms, and highlights the importance to control esDON for alleviating adverse influences from DON in receiving waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call