Abstract

Injectable bone cement (IBC) such as those based on methacrylates and hydraulic calcium phosphate and calcium sulfate-based cements have been used extensively for filling bone defects with acceptable clinical outcomes. There is a need however for novel IBC materials that can address some of the inherent limitations of currently available formulations to widen the clinical application of IBC. In this study, we characterized a novel hydraulic IBC formulation consisting of bioactive strontium-doped hardystonite (Sr-HT) ceramic microparticles and sodium dihydrogen phosphate, herein named Sr-HT phosphate cement (SPC). The resultant cement is comprised of two distinct amorphous phases with embedded partially reacted crystalline reactants. The novel SPC formulation possesses a unique combination of physicochemical properties suitable for use as an IBC, and demonstrates in vitro cytocompatibility when seeded with primary human osteoblasts. In vivo injection of SPC into rabbit sinus defects show minor new bone formation at the SPC periphery, similar to those exhibited in sinus defects filled with a clinically available calcium phosphate cement. The current SPC formulation presented in this paper shows promise as a clinically applicable IBC which can be further enhanced with additives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.