Abstract

To isolate a plant-derived compound with efflux inhibitory activity towards the NorA transporter of Staphylococcus aureus. Bioassay-guided isolation was used, with inhibition of ethidium bromide efflux via NorA as a guide. Characterization of activity was carried out using MIC determination and potentiation studies of a fluoroquinolone antibiotic in combination with the isolated compound. Everted membrane vesicles of Escherichia coli cells enriched with NorA were prepared to study efflux inhibitory activity in an isolated manner. The ethanolic extract of Persea lingue was subjected to bioassay-guided fractionation and led to the isolation of the known compound kaempferol-3-O-α-L-(2,4-bis-E-p-coumaroyl)rhamnoside (compound 1). Evaluation of the dose-response relationship of compound 1 showed that ethidium bromide efflux was inhibited, with an IC(50) value of 2 μM. The positive control, reserpine, was found to have an IC(50) value of 9 μM. Compound 1 also inhibited NorA in enriched everted membrane vesicles of E. coli. Potentiation studies revealed that compound 1 at 1.56 mg/L synergistically increased the antimicrobial activity of ciprofloxacin 8-fold against a NorA overexpresser, and the synergistic activity was exerted at a fourth of the concentration necessary for reserpine. Compound 1 was not found to exert a synergistic effect on ciprofloxacin against a norA deletion mutant. The 2,3-coumaroyl isomer of compound 1 has been shown previously not to cause acute toxicity in mice at 20 mg/kg/day. Our results show that compound 1 acts through inhibition of the NorA efflux pump. Combination of compound 1 with subinhibitory concentrations of ciprofloxacin renders a wild-type more susceptible and a NorA overexpresser S. aureus susceptible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call