Abstract

Novel peptide inhibitors of human leukocyte elastase (HLE) and cathepsin G (CG) were prepared by solid-phase peptide synthesis of P1 amino acid sequence variants of Curcurbita maxima trypsin inhibitor III (CMTI-III), a 29-residue peptide found in squash seed. A systematic study of P1 variants indicated that P1, Arg, Lys, Leu, Ala, Phe, and Met inhibit trypsin; P1, Val, Ile, Gly, Leu, Ala, Phe, and Met inhibit HLE; P1 Leu, Ala, Phe, and Met inhibit CG and chymotrypsin. Variants with P1, Val, Ile, or Gly were selective inhibitors of HLE, while inhibition of trypsin required P1 amino acids with an unbranched {beta} carbon. Studies of Val-5-CMTI-III (P1 Val) inhibition of HLE demonstrated a 1:1 binding stoichiometry with a (K{sub i}){sub app} of 8.7 nM. Inhibition of HLE by Gly-5-CMTI-III indicated a significant role for reactive-site structural moieties other than the P1 side chain. Val-5-CMTI-III inhibited both HLE and human polymorphonuclear leukocyte (PMN) proteolysis of surface-bound {sup 125}I-labeled fibronectin. Val-5-CMTI-III was more effective at preventing turnover of a peptide p-nitroanilide substrate than halting dissolution of {sup 125}I-labeled fibronectin. It was about as effective as human serum {alpha}{sub 1}-proteinase inhibitor in preventing PMN degradation of the connective tissue substrate. In addition to providingmore » interesting candidates for controlling inflammatory cell proteolytic injury, the CMTI-based inhibitors are ideal for studying molecular recognition because of their small size, their ease of preparation, and the availability of sensitive and quantitative assays for intermolecular interactions.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call