Abstract

Dopamine, a biogenic amine with important biological functions, is produced from l-DOPA by DOPA decarboxylase (DDC). DDC is a potential target to modulate the production of dopamine in several pathological states. Known inhibitors of DDC have been used for treatment of Parkinson's disease but suffered low specificity and diverse side effects. In the present study, we identified and characterized a novel class of natural-product-based selective inhibitors for DDC from the extract of Euonymus glabra Roxb. by a newly developed high-throughput enzyme assay. The structures of these inhibitors are dimeric diarylpropane, a unique chemical structure containing a divalent dopamine motif. The most effective inhibitors 5 and 6 have an IC50 of 11.5 ± 1.6 and 21.6 ± 2.7 μM in an in vitro purified enzyme assay, respectively, but did not inhibit other homologous enzymes. Compound 5 but not 6 dose-dependently suppressed the activity of hDDC and dopamine levels at low micromolar concentrations in cells. Furthermore, structure-activity relationship analyses revealed that p-benzoquinone might be a crucial moiety of these inhibitors for inhibiting hDDC. The natural-product-based selective inhibitors of hDDC could serve as a chemical lead for developing improved drugs for dopamine-related disease states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.