Abstract
The enzyme glutamate-cysteine ligase catalytic subunit (Gclc) is a rate-limiting enzyme in the biosynthesis of glutathione that is involved in antioxidant defense, detoxification of xenobiotics, and/or its metabolites and regulates the cell cycle and immune function. Therefore, Gclc presents an appealing target for the development of novel insecticides. In this study, we conducted high-throughput virtual screening from the ZINC20 database and identified three compounds with high binding affinity to the Tribolium castaneum Gclc (TcGclc). Ultimately, we selected ZINC000032992384 due to its superior stability and lowest binding energy, as determined through molecular dynamics simulations. Bioassay results revealed that the IC50 value of ZINC000032992384 was 19.70 μM lower than that of BSO (49.67 μM). Furthermore, the larval mortality in the ZINC000032992384 treated group was 63.8%, significantly higher than that of the controls (29.1% in the dichlorvos group and 6.4% in the acetone group). This study provides novel insights for the development of a Gclc-targeted inhibitor as a potent insecticide based on the interaction between receptors and ligands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.