Abstract
Introduction: The hypothalamic–pituitary–adrenal (HPA) axis is a three-gland component of the endocrine system and a key modulator of the stress response. We have developed a novel in vitro perfusion system to enable the study of pharmacological and hormonal challenges to tissue components of the HPA axis. In vivo studies have shown functional sex differences (sexual diergism) in HPA responses to cholinergic drugs, and in the present in vitro study, we examine these differences at several levels of the HPA axis. Methods: Hypothalami, pituitaries, and adrenal glands were collected from male and female rats ( n = 3 per sex). One-half hypothalamus, one-half pituitary, and one adrenal gland were placed individually into three Erlenmeyer flasks connected by tubing. Flasks were perfused with medium (pH 7.4) at 37 °C. Sampling ports between the flasks were used to collect buffer for determination of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) release from the hypothalamus, pituitary, and adrenal flasks, respectively, over an extended baseline period, to determine stability of the system, and after nicotine administration. Results: The perfusion system produced steady CRH, ACTH, and CORT baselines, the ACTH and CORT values being comparable to in vivo basal ACTH and CORT values in jugular-vein-cannulated rats. In vitro CRH, ACTH, and CORT responses to nicotine were significantly increased at 10 min and returned to baseline by 30 min, the CRH and ACTH responses from female tissues being greater than responses from male tissues. These sex differences were similar to those following nicotine administration in vivo. Discussion: The ability of this novel, dynamic in vitro system to replicate in vivo HPA axis responses supports its potential as a new method for pharmacological and toxicological studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Pharmacological and Toxicological Methods
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.