Abstract
A series of novel in situ polydimethylsiloxane (PDMS)-sepiolite nanocomposites were synthesized by anionic ring opening polymerization of octamethylcyclotetrasiloxane. These nanocomposites were characterized by Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy, Wide Angle X-Ray Diffraction (WAXD), Transmission Electron Microscopy (TEM), mechanical and dynamic mechanical properties and thermogravimetry. This paper highlights the structure-property relationship of in situ PDMS-sepiolite nanocomposites and a way to improve the mechanical, dynamic mechanical and thermal properties of silicone rubber. Comparison of these physico-mechanical properties with those of the ex situ nanocomposites reflects greater degree of filler dispersion for the in situ nanocomposites. Increasing amount of the filler reduced the size of the crystalline domains in PDMS matrix, which was evident from the X-Ray and the dynamic mechanical analysis. However, the polymer-filler interaction was even more prominent to negate the effect of the deterioration of the properties due to decrease in size of the microcrystallites. The polymer-filler interaction was reflected in the improved mechanical and thermal properties which were the consequences of proper dispersion of the filler in the polymer matrix. The modulus improvement of the rubber-clay nanocomposites was examined by using Guth and Halpin-Tsai model. The temperature of maximum degradation was raised by 167 °C and improvement of 210% in tensile strength and 460% in modulus at 100% elongation was observed. These results were correlated with the data obtained from WAXD and TEM studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.