Abstract

The aim of this study was to design and produce a novel surface composite coating on metallic substrate in order to improve the biocompatibility of metallic dental implant and the bone osteointegration simultaneously. Stainless steel 316L (SS) was used as a metallic substrate and a novel double-layer hydroxyapatite/tantalum (HA/Ta) coating was prepared on it. Tantalum coating was made using physical vapor deposition process and HA coating was produced using plasma-spraying technique on it. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were utilized to investigate the coating characterization. Electrochemical polarization tests were performed in two types of physiological solutions at 37 ± 1 °C in order to determine the corrosion behavior of the coated and uncoated specimens as indication of biocompatibility. The results indicated that the decrease in corrosion current density was significant for HA/Ta coated specimens and was much lower than the value obtained for uncoated 316L SS. The novel double-layer HA/Ta composite coating could improve the corrosion resistance and thus the biocompatibility of 316L SS dental implant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.