Abstract

The main objective of the present work is the fabrication of extremely efficient and new electrocatalysts for the water splitting process, which is important for producing clean energy. Cost-effective metal sulfides have demonstrated greater advantages over other materials for OER in an alkaline electrolyte. Despite extensive efforts, we have synthesized the innovative g-CN/NiSnanocomposite using a hydrothermal techniquefor electrocatalytic water splitting. We conducted a comprehensive set of tests toanalyze the electrocatalytic potential ofsynthesizedelectrocatalyst. Furthermore, the kinetic mechanisms of the produced electrocatalyst applied on nickel foam (NF)were investigated by linear sweep voltammetry (LSV). The chronoamperometry, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to determine the stability and catalytic process using a basic (1.0 M KOH) solution. The electrochemical tests of g-CN/NiS nanocomposite exhibit an impressive overpotential 194 mV to achieve ideal current density (Cd) 10 mA cm−2 and have a lowest Tafel value (33 mV dec-1). In addition, compared to a reversible hydrogen electrode (RHE), the nanocomposite exhibits a decrease in onset potential by 1.42 V and has remarkable stability for a duration of 50 h. Hence, it is feasible to enhance electrochemical efficiency byaltering the shape and surface interactions. These features collectively indicate that the electrocatalyst is highly suitable for the OER process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.