Abstract

AbstractThis report describes the preparation and swelling behaviour of novel hydrogels based on a water‐soluble dimethacrylate monomer (EBisEMA), which is characterized by a relatively high molar mass (Mn ∼ 1700 g mol−1) and contains a high proportion of aliphatic ether bonds in its structure. This feature results in moderately crosslinked and flexible polymer networks. Significant differences were observed in degree of swelling, depending on the synthesis method employed to obtain the hydrogels. The equilibrium water sorption of EBisEMA photopolymerized in bulk was 68 wt% while that of EBisEMA photopolymerized in aqueous solution (0.5 g mL−1) was 104 wt%. Thiol–methacrylate hydrogels were prepared by visible light photopolymerization of EBisEMA with a tetrafunctional thiol (PETMP) at various EBisEMA‐to‐PETMP molar ratios. These hydrogels contained unreacted thiol groups because of a faster homopolymerization reaction of EBisEMA. Hydrogels were also prepared in bulk by propylamine‐catalysed Michael addition reaction. No significant differences in swelling were observed between EBisEMA homopolymer and photocured EBisEMA–PETMP copolymer. Conversely, a marked increase in water uptake (110 wt%) was observed in the EBisEMA–PETMP hydrogels prepared by the Michael addition reaction catalysed by propylamine. These trends are explained in terms of a balance between the mass fraction of hydrophilic groups and the crosslinking density of the network. EBisEMA–PETMP hydrogels formulated with thiol in excess showed a noticeable tendency to adhere to diverse substrates, including paper, metals, glass and skin. This feature makes them especially attractive in applications for which adhesion is particularly critical such as dermatological patches. © 2018 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call