Abstract

IntroductionLiver transplantation is currently the only curative therapy for end-stage liver failure; however, establishment of alternative treatments is required owing to the serious donor organ shortage. Here, we propose a novel model of hybrid three-dimensional artificial livers using both human induced pluripotent stem cells (hiPSCs) and a rat decellularized liver serving as a scaffold.MethodsRat liver harvesting and decellularization were performed as reported in our previous studies. The decellularized liver scaffold was recellularized with hiPSC-derived hepatocyte-like cells (hiPSC-HLCs) through the biliary duct. The recellularized liver graft was continuously perfused with the culture medium using a pump at a flow rate of 0.5 mL/min in a standard CO2 (5%) cell incubator at 37 °C.ResultsAfter 48 h of continuous perfusion culture, the hiPSC-HLCs of the recellularized liver distributed into the parenchymal space. Furthermore, the recellularized liver expressed the albumin (ALB) and CYP3A4 genes, and secreted human ALB into the culture medium.ConclusionNovel hybrid artificial livers using hiPSCs and rat decellularized liver scaffolds were successfully generated, which possessed human hepatic functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call