Abstract

The synthesis of a novel series of hybrid monomers containing cationically polymerizable cycloaliphatic epoxide and 1-propenyl ether functional groups in the same molecule has been conducted. Detailed structure−reactivity studies of the diaryliodonium salt-induced cationic photopolymerizations of these monomers indicate that the rate of epoxide ring-opening polymerization is markedly enhanced by the presence of the 1-propenyl ether group. At the same time, the polymerization of the 1-propenyl ether groups in such hybrid monomers is retarded. A mechanism involving the free-radical-induced decomposition of the photoinitiator has been proposed which serves to amplify the rate of the photoinitiated cationic epoxide ring-opening polymerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.